Mary Floyd MAT 380 Presentation Dr. Bisson September 26, 2012

Laplace Transformations

A method of solving linear differential equations with constant coefficients is to perform a **Laplace transform**. This method takes a linear initial value problem and transforms its differential equation into an algebraic one. The transformation method works by taking the domain of the independent variable (call it the t-domain) into a new domain (the s-domain) where t is usually real and s is complex.

Laplace transform: The transformation of a given function f(t), which is denoted by $\bar{f}(s) = L\{f\}(s)$, is defined in terms of an integral by

$$\bar{f}(s) = L\{f\}(s) = \int_{0}^{\infty} f(t)e^{-st} dt.$$
 (1)

Clearly, the Laplace Transform $L\{f\}$ takes a function f(t) with independent variable t and returns a function $\bar{f}(s)$ with the independent variable s. From the definition (1) we immediately obtain the linear rule

$$\overline{(af+bg)}(s) = a\overline{f}(s) + b\overline{g}(s), \tag{2}$$

where a and b are constants and f and g are functions.

Laplace Transform of a first derivative:

Assume that a given function y = y(t) satisfies $y(t)e^{-kt} \to 0$ and $y'(t)e^{-kt} \to 0$ as $t \to \infty$ for some constant k. The Laplace Transform of the first derivative dy/dt of y = y(t) is obtained by using (1) and is written

$$L\left\{\frac{dy}{dt}\right\}(s) = \int_{0}^{\infty} \frac{dy}{dt} e^{-st} dt.$$

By integration by parts we have

$$L\left\{\frac{dy}{dt}\right\}(s) = \left[y e^{-st}\right]_0^{\infty} - \int_0^{\infty} y (-s) e^{-st} dt$$

$$L\{\frac{dy}{dt}\}(s) = -y(0) + s \int_{0}^{\infty} y e^{-st} dt.$$
 (3)

But notice that the integral on the right-hand side is now itself the Laplace Transform of y. So (2) becomes

$$L\{\frac{dy}{dt}\}(s) = -y(0) + s L\{y\}(s).$$

This is abbreviated to

$$L\{\frac{dy}{dt}\} = s \ \overline{y} - y(0). \tag{4}$$

Table of Laplace Transforms

Function: in the <i>t</i> -domain	Laplace Transform: in the <i>s</i> - domain
f(t)	$L\{f(t)\} \equiv \bar{f}(s)$
$y (\equiv y(t))$	$\overline{y} \ (\equiv \overline{y}(s))$
$\frac{dy}{dt}$	$s \overline{y} - y(0)$
$\frac{d^2y}{dt^2}$	$s^2 \overline{y} - s y(0) - y'(0)$
k	$\frac{k}{s}$
$e^{\alpha t}$	$\frac{1}{s-\alpha}$, $\operatorname{Re}(s-\alpha) > 0$
$\sin \beta t$	$\frac{\beta}{s^2 + \beta^2}$
$\cos \beta t$	$\frac{s}{s^2 + \beta^2}$
t^n	$\frac{n!}{s^{n+1}}$
$e^{\alpha t} g(t)$	$\overline{g}(s-\alpha)$, $\operatorname{Re}(s-\alpha) > 0$

where, in the table above, k, α and β are constants and n is a positive integer.

Significance

In the field of circuitry, Laplace transforms derive circuit equations from the time domain (the t-domain) to the s-domain. This analysis of linear time-invariant systems can also be applied to harmonic oscillators, optical devices and mechanical systems. The ability of Laplace transforms to take the time-domain and transform to the frequency-domain takes inputs and outputs of time and changes them to functions of complex angular frequency (measured in radians per unit time). This method is another way to analyze a system's behavior in a simplified manner.